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THOMAS-FERMI EQUATION OF STATE-THE HOT CURVE 

George A. Baker, Jr. and J. D. Johnson 

Theoretical Division? Los Alamos National Laboratory
University of' California, Los Alamos, X. M .  Si545. US.4 

We derivethehigh-temperaturelimit of theequation of state basedonthe 
Thomas-Fermistatisticaltheory of theatom.Theresulting"hotcurve'' is infact 
the ideal Fermi gas. We expand the thermodynamic properties of this gas in powers
of the fugacity and use this expansion to construct a representation of the pressure, 
accurate to about 0.1 %. This representation is compared with the actual theory for 
aluminum and the"hot curve" is found to representit well over a largeregion of 
interest in applications. 
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1. INTRODUCTION AND SUMMARY 

The Thomas-Fermi (T-F)statistical theory of the atom’ aswell as the modificn
tions due to Dirac‘ have long been used as a basic starting point for the computation 

In orderof approsimations to the equations of ~ t a t e . ~ ~ ~  to make use of this proce
dure, computer programs have been written to compute the numerical content of the 
theory. They consume n sufficient amount of computer time, eJen today, so that it 
is impractical to use them to compute: a b  initio. the value of the pressure: internal 
energy, etc.: every time that a new value is required inside an application computer 
program. Besides. as these efforts represent only approximate equationsof state. some 
adjustmeut is necessary to bring them into accord with physical reality. Conseyuen
tially, to date largely empiricalfits have been used to represent the equations of state 
for the purposes of applications. 

In this work, we are concerned with beginning an analysisof the physical struc
ture of the equations of state of real matter. As a start. we will study the Thomas-
Fermi model equation of state which represents a fair amount of the physics. a t  least 
in some regions. One method which is normally fruitfill, is to consider various limits. 
Therearecurrently twowhich areknown.Thefirst is t,helow-densitylimit.Here 
there is complete ionization when the system is in equilibrium and the pressure for 
an element of nuclear charge 2 is 

PQ/N = (2+ 1)kT:  0.1) 

the idealvasequation of state. Here P is thepressure, s2 is the volume of the 
system. ;‘Z’is the number of atoms: X: is Boltzmann’s constant and T is the absolute 
temperature. The second limit3 :s thelow-temperaturelimit, or the “coldcurve.” 
Here the pressure is of the form, 

where d(x) is a well defined function. If we think of the temperature-density, quarter
plane,theseresults give thelimitingbehavior of the T-F modelalong the zero
temperatureandthezero-densityedges.Thereremainthehigh-densityandthe 
high-temperature regions to examine for physical strlxture. 

One might think that in the high-temperature limit it \Iiould be appropriate to 
describe the system in purely classical terms. Indeed if such were the case: Baker5 
has proven that the pressure would be of the form, 

P R / N  = k T  f(QT3 /X:2). (1.3) 

The Debye-Huckel correction6 is of just this form. Also Baker has shown for this case 
that the internal energy has the particularly simple form, 

The statistical mechanics of Coulombic systems have been much studied.’ It is now 
well known that there does not esist a classical ( i e .  Planck‘s constant h = 0) gas
because atoms with a Coulomb interaction collapse to E L- -m. Tllus if w e  are to 
ever introduce a Coulomb attraction between the atomic nucleus and the electrons. 
me mustnecessarilyincludesomeaccount of the quantum effects that are needed 
to stabilizethe system.. -4s is also well knownthereare two important physical
lengths to beconsidered. The first is thede Broglie length which is proportional 
to h/v’’=. where m is the electron mass. and which measl.1res in a nonintcracting 
gas the importance of quantum effects. The Coulomb interaction docs not by itself 
provide the second length and the difficulty of its long ra.nge ca.n not be circl.lmveIltcd 
by studying dilute systenls because it contains no parameter with t,hc &measions of 
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a length. The second length is the Debye screening length which is proportional to 
e ' /kT .  This length is however a statistical effect and should follow from thc theory,
but unfortunately is not there ah initio. Thus when we look to the high-temperature 
and high-density regions. if we consider the cases where G / N  >> ( e 2 / k T ) 3 1t,hen we 
can hope to start withrz noninteracting electrongas (with a background gas 9f atomic 
nuclei) as the basic system. 

In the second section, we derive the limit of Thomas-Fermi theory when the 
Debye screening length is negligible compared to the interparticle distance. and the 
de Broglie length remains arbitrary. We find that it correctlyreduces to the ideal 
Fermi gas. We call this limit the "hot curve,'' because it is reached if one either fixes 
the density and lets the temperaturego to infinity, or much less restrictively, it is also 
reached if one fises the deBroglie length and then lets the temperaturego to infinity.
In the third section we review the theory of the ideal Fermi gas and describe how 
to calculate its properties in a practical manner. We derive lengthy fugacity series 
and find that the pressure function can be approsimated to within, say O . l % ,  by a 
low-order, two-point Pad6 approximant. In the final section we compare the icieal gas
approsirnation to results for aluminum and map out its region of validity to  various 
degrees of accuracy. 

2. 	HIGH TEMPERATURE LIMIT OF THOMAS-FERMI 
THEORY 

Thomas-Fermi theory has been applied to compute equations of state at finite 
temperature by Feynman et d 3  They begin with an application of the statistical 
analysis of Fermi and Dirac which leads to the equation 

Then one uses Poisson's equation 

1 d2
- - (rV(r))  = 
r dr2 

(3.3) 

to determine V(r). It yields 

16r2  -
h3 

(2.3) 

Note that in thecase of no interaction that the right-handside of (2.3) vanishes (e=O) 
and so the equation implies that V = a +b/r  where a and b are constants. In order to 
simplify the above equation, Feynman et a L 3  introduce dimensionless variables. First 
they define a. length scale, 

where s = r / c .  Then since '7 is independent of r: (3.3) becomes 

d2j3 
- SI1 (/!3/.9), ( 3 . 5 )cl.s 

where 
( 2 . G )  
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The boundary conditions of(2.5)become. as at thc origin V ( rj must bcllavc as Z c / r .  

The scheme employed is to suppose that each atom is confined to a sphere of volume 
equal to thevolume per particle. This is clcarly an approximation. The other bound
ary condition is to require that the numberof electrons in the sphere is exactly equal 
to the nuclear charge. A little manipulation serves to show that the condition, 

(2.S) 

imposesthisnormalizationinthesphere of radius r = cb. Feynman e t  aL3 derive, 
among other things, the formula for the pressure as 

(2.9) 

n-here O b  is the value of i3 on the boundary s = b. 

j In a parallel way we may set out the corresponding formulae for the ideal Fermi 
?as. Inthiscasetheelectrondensity is simplygiven by (3.1) with e = 0. As 7 
1s independent of T ,  one sees immediately by (2.6) that the equation for the density 
(2.5) is simply satisfied. Since by (2.4) and (2.7) both the length and magnitudescales 
depend on the electronic charge e = 0, the normalization equP.tion (2.8), in leading
order. is automatically satisfied, and so does not determine the number of electrons 
inthislimit.Returningto (2.1), we mayimpose thenormalizationcondition by
integrating the density over a sphere of radius r. It gives 

(2.10) 

which implies 7. In this limit, the pressure equation (2.9), becomes, 

(2.11) 

a parametric expression for the pressure in terms of the 7 of (2.10). Note is made 
that c3a'is independent of the electronic charge e = 0, so this form is valid in this 
noninteracting limit. Comparison with the results of Huang' for the ideal Fermi gas, 
reveal complete agreement, when it is remembered that for our case the spin, s = +.-

Xow we are ready toconsider the "hot curve" limit of the Thomas-Fermi theory.
Inthebasicequations of thetheory, (2.5, 7-S), we make the following change of 
variables, 

a = S / O " ,  11 y = p / w .  (2.12) 
We thus obtain 

y(0) = a ; ,  

(2.13) 


(2.14) 


(2.13) 
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